TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO]
Em química quântica é chamado tripleto um sistema com três possíveis valores de spin. Pode consistir num bóson W ou Z com spin de valor 1, dois fermiões idênticos com spin 1/2, ou mais de duas partículas num estado com spin total de 1 (tais como electrões numa molécula oxigénio tripleto). Um tripleto de spin é um conjunto de três estados quânticos dum sistema, cada um com um spin total S = 1 (em unidades de ).
Num sistema com duas partículas de spin-1/2 - por exemplo, o protão e o electrão no estado fundamental do hidrogénio, medido num determinado eixo, cada partícula pode girar para cima ou para baixo, pelo que o sistema possui quatro estados básicos no total:
Usamos os spins de cada partícula para rotular os estados básicos, em que a primeira e segunda seta em cada combinação indicam a direcção de rotação da primeira e segunda partículas, respectivamente. Em rigor:
- X
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Em química quântica é chamado tripleto um sistema com três possíveis valores de spin. Pode consistir num bóson W ou Z com spin de valor 1, dois fermiões idênticos com spin 1/2, ou mais de duas partículas num estado com spin total de 1 (tais como electrões numa molécula oxigénio tripleto). Um tripleto de spin é um conjunto de três estados quânticos dum sistema, cada um com um spin total S = 1 (em unidades de ).
Num sistema com duas partículas de spin-1/2 - por exemplo, o protão e o electrão no estado fundamental do hidrogénio, medido num determinado eixo, cada partícula pode girar para cima ou para baixo, pelo que o sistema possui quatro estados básicos no total:
Usamos os spins de cada partícula para rotular os estados básicos, em que a primeira e segunda seta em cada combinação indicam a direcção de rotação da primeira e segunda partículas, respectivamente. Em rigor:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e dado que para partículas de spin 1/2, os estados básicos abrangem um espaço de dimensão 2, os estados básicos abrangem um espaço de dimensão 4. Agora o spin total e a sua projeção sobre o eixo previamente definido pode ser calculado usando as regras para a adição o momento angular na mecânica quântica usando as coeficientes de Clebsch-Gordan. No geral:
- X
e dado que para partículas de spin 1/2, os estados básicos abrangem um espaço de dimensão 2, os estados básicos abrangem um espaço de dimensão 4. Agora o spin total e a sua projeção sobre o eixo previamente definido pode ser calculado usando as regras para a adição o momento angular na mecânica quântica usando as coeficientes de Clebsch-Gordan. No geral:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Substituindo os quatro estados básicos:
Obtém-se os valores possíveis de spin total dados juntamente com a sua representação na base . Existem três estados com spin total do momento angular igual a 1:
- X
Substituindo os quatro estados básicos:
Obtém-se os valores possíveis de spin total dados juntamente com a sua representação na base . Existem três estados com spin total do momento angular igual a 1:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e um quarto com o momento angular de spin total de 0.
- X
e um quarto com o momento angular de spin total de 0.
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Em física teórica, um singleto geralmente refere-se a uma representação de uma dimensão. Ele também pode se referir a duas ou mais partículas preparadas em um estado correlacionado, em que o momento angular total do estado é zero.
O estado singleto formado a partir de um par de elétrons tem muitas propriedades peculiares, e executa um papel fundamental no paradoxo EPR e entrelaçamento quântico. Em notação Dirac esse estado EPR é geralmente representado como:
- X
Em física teórica, um singleto geralmente refere-se a uma representação de uma dimensão. Ele também pode se referir a duas ou mais partículas preparadas em um estado correlacionado, em que o momento angular total do estado é zero.
O estado singleto formado a partir de um par de elétrons tem muitas propriedades peculiares, e executa um papel fundamental no paradoxo EPR e entrelaçamento quântico. Em notação Dirac esse estado EPR é geralmente representado como:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Um estado de Fock, em mecânica quântica, é qualquer estado do espaço de Fock com um número bem definido de partículas em cada estado. O nome se deve a Vladimir Fock.
De acordo com a mecânica quântica, o número de partículas de um sistema quântico, num estado físico totalmente geral, não tem por que estar bem definido, sendo possível que, ao fazer-se um medida do número de partículas, se obtenham diferentes resultados. No entanto, em certos casos, o sistema pode ter um estado físico peculiar no qual o número de partículas esteja totalmente bem definido e os estados nos quais isto acontece são precisamente os estados de Fock.
Um estado de Fock, em mecânica quântica, é qualquer estado do espaço de Fock com um número bem definido de partículas em cada estado. O nome se deve a Vladimir Fock.
De acordo com a mecânica quântica, o número de partículas de um sistema quântico, num estado físico totalmente geral, não tem por que estar bem definido, sendo possível que, ao fazer-se um medida do número de partículas, se obtenham diferentes resultados. No entanto, em certos casos, o sistema pode ter um estado físico peculiar no qual o número de partículas esteja totalmente bem definido e os estados nos quais isto acontece são precisamente os estados de Fock.
Explicação
Se nos limitamos, por simplicidade, a um sistema com um só tipo de partícula e um só modo, um estado de Fock representa-se por |n>, onde n é um valor inteiro. Isto significa que existem n quanta de excitação nesse modo. Assim, |0> corresponde ao estado fundamental (sem excitação), ou estado que representa o vazio quântico (isto é diferente de 0, que é o vector nulo que não é um estado possível do sistema por não ser um vector unitário - ver mais abaixo).
Os estados de Fock formam a forma mais conveniente de base do espaço de Fock. Estão definidos para seguir as seguintes relações em álgebra bosónica:
- X
Se nos limitamos, por simplicidade, a um sistema com um só tipo de partícula e um só modo, um estado de Fock representa-se por |n>, onde n é um valor inteiro. Isto significa que existem n quanta de excitação nesse modo. Assim, |0> corresponde ao estado fundamental (sem excitação), ou estado que representa o vazio quântico (isto é diferente de 0, que é o vector nulo que não é um estado possível do sistema por não ser um vector unitário - ver mais abaixo).
Os estados de Fock formam a forma mais conveniente de base do espaço de Fock. Estão definidos para seguir as seguintes relações em álgebra bosónica:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde a (resp. a†) é o operador bosónico de aniquilação (resp. criação). Para uma álgebra fermiónica seguem-se relações similares.
O etiquetado dos estados de Fock mediante um número intero se justifica se introduzirmos o operador número de partículas definido como N = a†a. Se aplicamos este operador a um estado etiquetado como n que satisfaça as relações (1) pode-se comprovar que:
Isto permite comprovar que <a†a>=n, de facto os estados de Fock são autovectores do operador número de partículas e, por tanto, Var(a†a)=0. Isto implica que a medida do número de partículas N = a†a num estado de Fock sempre resulta num valor definido, sem flutuações.
X
onde a (resp. a†) é o operador bosónico de aniquilação (resp. criação). Para uma álgebra fermiónica seguem-se relações similares.
O etiquetado dos estados de Fock mediante um número intero se justifica se introduzirmos o operador número de partículas definido como N = a†a. Se aplicamos este operador a um estado etiquetado como n que satisfaça as relações (1) pode-se comprovar que:
Isto permite comprovar que <a†a>=n, de facto os estados de Fock são autovectores do operador número de partículas e, por tanto, Var(a†a)=0. Isto implica que a medida do número de partículas N = a†a num estado de Fock sempre resulta num valor definido, sem flutuações.
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Na mecânica quântica, o estado do gato, em homenagem ao gato de Schrödinger,[1] é um estado quântico que é composto de duas condições diametralmente opostas ao mesmo tempo,[2] como as possibilidades de um gato estar vivo e morto ao mesmo tempo. O gato de Schrödinger às vezes é conectado à hipótese dos muitos mundos por seus proponentes.[3]
Na mecânica quântica, o estado do gato, em homenagem ao gato de Schrödinger,[1] é um estado quântico que é composto de duas condições diametralmente opostas ao mesmo tempo,[2] como as possibilidades de um gato estar vivo e morto ao mesmo tempo. O gato de Schrödinger às vezes é conectado à hipótese dos muitos mundos por seus proponentes.[3]
Comentários
Postar um comentário